-
21 program
программа; управляющая программа, УП || программировать; готовить УП- 3D machining programto download programs to individual machine controls — вводить УП ( из центральной ЭВМ системы) в УЧПУ отдельных станков
- absolute program
- ACC programs
- analysis programs
- application design automation program
- APT program
- APT source program
- assembly language program
- assembly program
- automated data preparation evaluation program
- automatic NC machining data generation programs
- automatic offset program
- auxiliary program
- axis driver scaling program
- basic control program
- BCL program
- benchmark program
- bureau computer program
- CAD program
- CAD/NC programs
- CAM-generated program
- canned generic NC program
- canned program
- cellular conversion program
- channel program
- circuit analysis program
- CNC inspection program
- CNC program
- CNC turning-center program
- collision-free program
- communication control program
- communications control program
- companion program
- compensation program
- complex tooling cost program
- component program
- computer program
- computer-aided design and evaluation program
- computer-stored part program
- consultation program
- contingency program
- continuous NC program
- contour milling program
- control I/O program
- control program
- control-resident program
- conversational program
- coolant-dispensing program
- cutter path program
- cutting program
- data editor program
- data fetch program
- data I/O program
- DCS program
- declarative program
- dexel program
- diagnosis program
- diagnostic program
- DMIS program
- DNC programs
- DOS program
- download program
- draft program
- edited program
- error-correcting program
- ESPRIT program
- evaluation program
- execute program
- executive program
- extension program
- externally generated program
- family program
- fault diagnosis program
- finished program
- finite-element program
- fixture-building program
- Fortran-based program
- functions program
- general program
- general-purpose program
- geometric modeling program
- goal-oriented program
- graphics program
- grinding program
- grinding wheel wear compensation program
- hard program
- hardwired program
- high priority program
- higher priority program
- ICAM programs
- implementation program
- incremental program
- initial loading program
- inspection program
- integer program
- interface program
- interpretative program
- interpreter program
- interpretive program
- jaw change program
- ladder logic program
- logic program
- low priority program
- lower priority program
- machine cutting program
- machine program
- machine tool program
- machining program
- main program
- maintenance programs
- malfunction analysis program
- management program
- manipulator-level program
- master program
- master software program
- MDI program
- measuring machine program
- mirror program
- MMS programs
- mode control program
- modeling program
- modified program
- monitoring program
- MS program
- MS-DOS programs
- multisequence program
- NC data generation programs
- NC program
- NC tape program
- NC verification program
- nonresident diagnostic program
- nonresident diagnostics program
- numerical control program
- numerically intensive program
- occupational health program
- occupational safety program
- off-line diagnostic program
- one-to-one program
- operator-activated program
- optimizing program
- order-picking program
- palletizing program
- part inspection program
- part program
- part-family program
- part-plan program
- pass through program
- path calculation program
- PC vision programs
- peripheral support program
- pilot program
- plain language program
- plugboard program
- postprocessor programs
- preprepared program
- preselected program
- preset program
- priority program
- production program
- proved program
- proven part program
- punched tape program
- quality programs
- read-in program
- refining program
- requesting part program
- returning control program
- reverse program
- robot control program
- robot execution program
- robot program
- rule-based program
- running program
- scaling program
- scheduling program
- sequential program
- service program
- simulation program
- SMSG program
- software control programs
- software programs
- source program
- SPC program
- spreadsheet program
- spreadsheet-based program
- standard machining program
- standard program
- stored program
- stress analysis program
- structural optimization program
- swarf-clearing program
- system program
- system's executive program
- tape program
- task program
- task-level program
- teaching operations function program
- temporary diagnostic program
- test program
- testing program
- thread program
- three-dimensional surface program
- time program
- tolerancing program
- tool animation program
- tool management program
- tooling program
- tool-plan program
- tool-setting program
- tool-tracking program
- tracing program
- trajectory translator program
- turnkey programs
- type-related program
- unproved program
- upload program
- up-to-date program
- user friendly program
- user I/O program
- user-extension program
- user-written program
- utility program
- vehicular behavior analysis program
- work program
- working program
- workpiece program
- workstation programEnglish-Russian dictionary of mechanical engineering and automation > program
-
22 Computers
The brain has been compared to a digital computer because the neuron, like a switch or valve, either does or does not complete a circuit. But at that point the similarity ends. The switch in the digital computer is constant in its effect, and its effect is large in proportion to the total output of the machine. The effect produced by the neuron varies with its recovery from [the] refractory phase and with its metabolic state. The number of neurons involved in any action runs into millions so that the influence of any one is negligible.... Any cell in the system can be dispensed with.... The brain is an analogical machine, not digital. Analysis of the integrative activities will probably have to be in statistical terms. (Lashley, quoted in Beach, Hebb, Morgan & Nissen, 1960, p. 539)It is essential to realize that a computer is not a mere "number cruncher," or supercalculating arithmetic machine, although this is how computers are commonly regarded by people having no familiarity with artificial intelligence. Computers do not crunch numbers; they manipulate symbols.... Digital computers originally developed with mathematical problems in mind, are in fact general purpose symbol manipulating machines....The terms "computer" and "computation" are themselves unfortunate, in view of their misleading arithmetical connotations. The definition of artificial intelligence previously cited-"the study of intelligence as computation"-does not imply that intelligence is really counting. Intelligence may be defined as the ability creatively to manipulate symbols, or process information, given the requirements of the task in hand. (Boden, 1981, pp. 15, 16-17)The task is to get computers to explain things to themselves, to ask questions about their experiences so as to cause those explanations to be forthcoming, and to be creative in coming up with explanations that have not been previously available. (Schank, 1986, p. 19)In What Computers Can't Do, written in 1969 (2nd edition, 1972), the main objection to AI was the impossibility of using rules to select only those facts about the real world that were relevant in a given situation. The "Introduction" to the paperback edition of the book, published by Harper & Row in 1979, pointed out further that no one had the slightest idea how to represent the common sense understanding possessed even by a four-year-old. (Dreyfus & Dreyfus, 1986, p. 102)A popular myth says that the invention of the computer diminishes our sense of ourselves, because it shows that rational thought is not special to human beings, but can be carried on by a mere machine. It is a short stop from there to the conclusion that intelligence is mechanical, which many people find to be an affront to all that is most precious and singular about their humanness.In fact, the computer, early in its career, was not an instrument of the philistines, but a humanizing influence. It helped to revive an idea that had fallen into disrepute: the idea that the mind is real, that it has an inner structure and a complex organization, and can be understood in scientific terms. For some three decades, until the 1940s, American psychology had lain in the grip of the ice age of behaviorism, which was antimental through and through. During these years, extreme behaviorists banished the study of thought from their agenda. Mind and consciousness, thinking, imagining, planning, solving problems, were dismissed as worthless for anything except speculation. Only the external aspects of behavior, the surface manifestations, were grist for the scientist's mill, because only they could be observed and measured....It is one of the surprising gifts of the computer in the history of ideas that it played a part in giving back to psychology what it had lost, which was nothing less than the mind itself. In particular, there was a revival of interest in how the mind represents the world internally to itself, by means of knowledge structures such as ideas, symbols, images, and inner narratives, all of which had been consigned to the realm of mysticism. (Campbell, 1989, p. 10)[Our artifacts] only have meaning because we give it to them; their intentionality, like that of smoke signals and writing, is essentially borrowed, hence derivative. To put it bluntly: computers themselves don't mean anything by their tokens (any more than books do)-they only mean what we say they do. Genuine understanding, on the other hand, is intentional "in its own right" and not derivatively from something else. (Haugeland, 1981a, pp. 32-33)he debate over the possibility of computer thought will never be won or lost; it will simply cease to be of interest, like the previous debate over man as a clockwork mechanism. (Bolter, 1984, p. 190)t takes us a long time to emotionally digest a new idea. The computer is too big a step, and too recently made, for us to quickly recover our balance and gauge its potential. It's an enormous accelerator, perhaps the greatest one since the plow, twelve thousand years ago. As an intelligence amplifier, it speeds up everything-including itself-and it continually improves because its heart is information or, more plainly, ideas. We can no more calculate its consequences than Babbage could have foreseen antibiotics, the Pill, or space stations.Further, the effects of those ideas are rapidly compounding, because a computer design is itself just a set of ideas. As we get better at manipulating ideas by building ever better computers, we get better at building even better computers-it's an ever-escalating upward spiral. The early nineteenth century, when the computer's story began, is already so far back that it may as well be the Stone Age. (Rawlins, 1997, p. 19)According to weak AI, the principle value of the computer in the study of the mind is that it gives us a very powerful tool. For example, it enables us to formulate and test hypotheses in a more rigorous and precise fashion than before. But according to strong AI the computer is not merely a tool in the study of the mind; rather the appropriately programmed computer really is a mind in the sense that computers given the right programs can be literally said to understand and have other cognitive states. And according to strong AI, because the programmed computer has cognitive states, the programs are not mere tools that enable us to test psychological explanations; rather, the programs are themselves the explanations. (Searle, 1981b, p. 353)What makes people smarter than machines? They certainly are not quicker or more precise. Yet people are far better at perceiving objects in natural scenes and noting their relations, at understanding language and retrieving contextually appropriate information from memory, at making plans and carrying out contextually appropriate actions, and at a wide range of other natural cognitive tasks. People are also far better at learning to do these things more accurately and fluently through processing experience.What is the basis for these differences? One answer, perhaps the classic one we might expect from artificial intelligence, is "software." If we only had the right computer program, the argument goes, we might be able to capture the fluidity and adaptability of human information processing. Certainly this answer is partially correct. There have been great breakthroughs in our understanding of cognition as a result of the development of expressive high-level computer languages and powerful algorithms. However, we do not think that software is the whole story.In our view, people are smarter than today's computers because the brain employs a basic computational architecture that is more suited to deal with a central aspect of the natural information processing tasks that people are so good at.... hese tasks generally require the simultaneous consideration of many pieces of information or constraints. Each constraint may be imperfectly specified and ambiguous, yet each can play a potentially decisive role in determining the outcome of processing. (McClelland, Rumelhart & Hinton, 1986, pp. 3-4)Historical dictionary of quotations in cognitive science > Computers
-
23 abnormal
аномальный; ненормальный; с отклонением; нарушенный- abnormal condition - abnormal conditions - abnormal duty - abnormal end - ABEND - abnormal end of task - abnormal ending - abnormal gas pressure - abnormal handling - abnormal indication - abnormal inductor - abnormal mode - abnormal operating conditions - abnormal operation - abnormal risk - abnormal steel - abnormal test failure -
24 constraint
ограничение, (накладываемая) связь, (ограничительное) условиеactuation constraintactuator constraintaerodynamic constraintaeroelastic constraintaltitude constraintaxial constraintbehavior constraintsbuckling constraintconnectivity constraintcontrol constraintcontrol magnitude constraintcross-section constraintdamping constraintdeflection constraintdesign constraintsdisplacement constraintdrag constraintelastic constraintequality constraintexternal constraintfixed-frame constraintfixed-time-of-arrival constraintflutter constraintflutter speed constraintfrequency constraintfrequency domain constraintgain-phase constraintgeneralized constraintgeometric constrainthandling constraintinequality constraintkinematic constraintmass constraintminimum gage constraintmoving frame constraintnode constraintsnoise constraintoperational constraintsperformance constraintsperiodic structure constraintpoint performance constraintsrate constraintreal-time constraintreal-world constraintsresponse constraintrigid body constraintrobustness constraintrotating frame constraintsaturation constraintstability constraintstall constraintstate constraintsstate variable constraintsstrain constraintsstrength constraintstress constraintstructural constraintstakeoff and landing constrainttask constraintsterminal constraintsthickness constrainttime constraintstorque constrainttouchdown constraintstravel constraintturn constraintunilateral constraintsvelocity constraint -
25 assessment of competence
HRthe measurement of an employee’s performance against an agreed set of standards for work-based activities. In the United Kingdom, assessment of competence is generally made against indicators of the successful achievement of a particular job function. There are four dimensions to assessment: the knowledge and understanding required to carry out a task; the performance indicators to be looked for; the scope or range of situations across which an employee is expected to perform; and any particular evidence requirements. Vocational qualifications for a wide range of jobs in the United Kingdom are based on a set of occupational standards that contain these elements. A wide variety of techniques or instruments exists to assess competence. These include specific work-based ability and aptitude tests, as well as traditional methods of performance appraisal and evaluation. Recent years have seen a dramatic rise in the use of direct observation at work by trained assessors, the collection of personal portfolios, and peer assessment techniques such as 360 degree appraisal. All require the careful review of work behavior against a set of indicators that have been clearly shown to be associated with successful performance.
- 1
- 2
См. также в других словарях:
Task analysis — is the analysis of how a task is accomplished, including a detailed description of both manual and mental activities, task and element durations, task frequency, task allocation, task complexity, environmental conditions, necessary clothing and… … Wikipedia
Behavior modification — is the use of empirically demonstrated behavior change techniques to improve behavior, such as altering an individual s behaviors and reactions to stimuli through positive and negative reinforcement of adaptive behavior and/or the reduction of… … Wikipedia
Task allocation and partitioning of social insects — Task allocation and partitioning refers to the way that tasks are chosen, assigned, subdivided, and coordinated (here, within a single colony of social insects). Closely associated are issues of communication that enable these actions to… … Wikipedia
Behavior analysis of child development — Child development in behavior analytic theory has origins in John B. Watson s behaviorism.[1] Watson wrote extensively on child development and conducted research (see Little Albert experiment). Watson was instrumental in the modification of… … Wikipedia
Behavior of nuclear fuel during a reactor accident — This page is devoted to a discussion of how uranium dioxide nuclear fuel behaves during both normal nuclear reactor operation and under reactor accident conditions such as overheating. Work in this area is often very expensive to conduct, and so… … Wikipedia
Organizational citizenship behavior — (hereafter, OCB) has been studied since the late 1970s. Over the past three decades, interest in these behaviors has increased substantially. Organizational behavior has been linked to overall organizational effectiveness, thus these types of… … Wikipedia
Applied behavior analysis — (ABA) is the science of applying experimentally derived principles of behavior to improve socially significant behavior. ABA takes what we know about behavior and uses it to bring about positive change (Applied). Behaviors are defined in… … Wikipedia
Counterproductive work behavior — (CWB) is employee behavior that goes against the goals of an organization.[1] These behaviors can be intentional or unintentional and result from a wide range of underlying causes and motivations. It has been proposed that a person by environment … Wikipedia
Civic virtue (organizational citizenship behavior dimension) — is one of the five dimensions of organizational citizenship behavior (hereafter, OCB) identified in Dennis Organ’s prominent 1988 definition of the construct. Originally, Smith, Organ, and Near (1983) first proposed two dimensions: altruism and… … Wikipedia
Collective animal behavior — Sort sol. Starling flock at sunset in Denmark Collective animal behavior describes the coordinated behavior of large groups of similar animals and the emergent properties of these groups. Facets of this topic include the costs and benefits of… … Wikipedia
Professional practice of behavior analysis — The professional practice of behavior analysis is the fourth domain of behavior analysis. The other three are behaviorism, experimental analysis of behavior, and applied behavior analysis. [Cooper, et al. p. 20] The professional practice of… … Wikipedia